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We point out that, on the basis of a theorem by L. Michel, every model based 
on the symmetry G |  | G has a generic low-energy limit the breaking to 
diagonal action, i.e., to G. This applies in particular to the proposal by Nielsen 
to consider such a model with G the standard model group. 

1. I N T R O D U C T I O N  

In a series o f  papers  Nielsen and  co l l abora to r s  2 have considered the 
poss ib i l i ty  tha t  the g rand  unif icat ion group  is of  the form 

~ 0 = G I | 1 7 4  �9 - | 1 7 4  �9 �9 |  

= (G1)| | (G2)| | " �9 �9 | (Gs) | (1) 

and  tha t  the low-energy l imit  cor responds  to b reak ing  o f  this symmet ry  to 
the d i agona l  ac t ion  over  the G~ spaces, i.e., to 

~ = Gl | G2 |  �9 �9 | G~ (2) 

Na tu ra l ly ,  the G; factors  should  then be S U ( n )  groups.  
We will no t  enter  in to  the discussion o f  the Nielsen model ,  for  which 

we refer the reader  to his papers  (see foo tno te  2) ; our  po in t  here is jus t  to 
po in t  out  that ,  once a symmet ry  o f  the k ind  cons idered  by  Nielsen is 
assumed,  so lu t ions  b reak ing  it to d iagona l  act ion do necessari ly exist, as a 
consequence  o f  a t heo rem o f  Michel  (1971) - - ac tua l l y  mo t iva t ed  by SU(3)  

~Centre de Physique Theorique, Ecole Polytechnique, F-91128 Palaiseau, France. 
2See Nielsen (1991) for a recent review; for previous contributions see the references cited 
there; recent ones are Bennet et al. (1988), Nielsen and Brene (1989), and Nielsen (1989); see 
also Froggat and Nielsen (1991). 
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models (Michel and Radicati, 
geometry of group actions. 

1971, 1973) in 

Gaeta 

particle physics--on the 

2. SETTING THE (REDUCED) STAGE 

Let us now state a precise setting for our considerations. It will be a 
simplification of Nielsen's, but clearly it contains its essential characteristics, 
and our remarks will obviously generalize to his ful! setting. 

Let us consider a smooth potential V(~) defined on E = M x.  �9 �9 x M =  
(M) • where M ~ _ R " .  We will consider coordinates x ~ R "  on each copy 
of M; i.e., E=M~ x .  . . x M , ,  ~ =  (x~ . . . .  , x , ) ,  x i e M i = _ R  ". The potential 
V: E ~ R will be supposed symmetric under permutations of the x's, i.e., 

v ( ~ )  = v ( ~ )  w e s  (3) 

with S (a subgroup of) the permutation group on n elements S,. In other 
words, 

V ( x , ~  . . . . .  x ,~( .~)  = V ( x ~  . . . . .  x . )  (4) 

Moreover, we assume that an action of G is defined on M, where G is a 
compact Lie group, and V is also invariant under the action of  fC---(G) | 
on (M) • i.e., u . . . . .  g , ) e G |  �9 | G one has 

V ( g , x ~  . . . . .  g ~  = V ( x l  , . . . , x . )  (5) 

Finally, the full symmetry group of V is therefore 

Gv = S | ~ ~ (6) 

where |  denotes semidirect product. We will refer to this situation as a 
Nielsen model. 

To fix ideas, let us consider M =  C2-~R 4, G = S U ( 2 ) ,  n=2 ,  so that S=  
Z2; a possible V(~) in this case would be 

v ( ~ )  = (Zx~ + x~) + (Zx~ + x~) + x ~ x ~ fl( , -  2) (7) 

where ~ and fl are real parameters, x ~ R  4~- C 2, and SU(2) acts in C 2 (in 
R 4) by its standard action (by the realification of its standard action). 

3. MICHEL'S THEOREM: CRITICAL ORBITS 

Let us now recall very briefly the content of Michel's theorem (Michel, 
1971); for more details, generalizations, applications, etc., the reader is 
referred, e.g., to Michel (1972), Abud and Sartori (1983), Palais (1979), and 
Gaeta (1992a). 



Breaking of Permutation Symmetry 729 

Given an action of G (a compact finite-dimensional Lie group) on the 
finite-dimensional smooth manifold M, to any point x e M  we can associate 
the isotropy subgroup Gx ~_ G: 

G x = - { g ~ a l g x - = x }  (8) 

Points on the same G-orbit have conjugated isotropy subgroups: 

y = gx  ~ Gy = gGxg -1 (9) 

If  we consider conjugation classes of isotropy subgroups, 

[Gx] = { H~_ G l H = g G x g  - ' ,  g e G  } 

clearly y = g x  ~ [Gy] = [G~] and 

[G,,] = [Gx] ~ y ~ - x  0 0 3  

defines an equivalence relation -~ not only in M, but also in the orbit space 
f ~ = M / G :  

c0-~ co '~[G~] = [Gy], x~co, y~co' (10") 

The set of points x e M (respectively, of orbits co s f~ ) in the same equivalence 
class under (10) is called a stratum in M (respectively, in f~). 

For  a scalar potential ~ :  M ~ R  invariant under G, q ) ( g x ) = ~ ( x ) ,  
Vx e M, Vg e G, critical points will clearly appear in G-orbits, and we will talk 
of critical orbits. For a given G-action on M, there will be G-orbits which 
are critical for any smooth G-invariant potential; these will be called G- 
critical orbits. The simplest example of a G-critical orbit is given by the Z2 
action x ~ - x  on the real line R: any even function f ( x ) = f ( - x )  has zero 
gradient at the origin. 

In this notation, Michel's theorem tells that: A G-orbit is G-critical i f  
and only i f  it is isolated in its stratum. 

This clearly requires that we define a topology in orbit space; this can 
be issued by a distance among orbits, which can be thought of  as 

d(c0, o) ')= rain []x-y[[ (11) 

where ]lx-yll is the distance in M. We will not enter into details, since 
physically one wants M =  C u ~  _ R 2N and the distance is just the Euclidean 
one. (Moreover, our orbits isolated in their strata will actually belong to 
strata made of finite discrete sets of orbits.) 

To fix ideas, let us consider some simple examples. 

(i) M =  R, G = Z2, as noted before. 
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(ii) M = S 2 c R  3, G= SO(2 )  acting as rotations around the vertical 
axis; the north and south poles are critical points for any G-invariant poten- 
tials, and indeed (distinct) G-critical orbits. The orbit space is in fact f~ = 
[ - l ,  1] (orbits are thought of as identified by the coordinate along the axis 
of  rotation), with two strata, f~o = {-1} w {1} and •1 = ( -1 ,  1). 

(iii) M = R 2  with coordinates (x ,y) ,  G = Z ~ |  y acting by 
Z~: (x, y) ~ ( - x ,  y) ;  ZY: (x, y) --* (x, - y ) .  The orbit space is ~ = R+ x R+ = 
{ (x ,y )rx>_O,y>O};  there are four strata: f lo= {(0, 0)}, flY= 
{(0, y ) ; y > 0 } ,  f~Y={(x, 0 ) ; x > 0 } ,  ~ 2 = { ( x , y ) [ x y > O } .  Notice that 
although f~i ~ and f~]' correspond to isomorphic isotropy subgroups 
Z~, Z y, these are not conjugated in G, and therefore f~]~, f~{ are different 
strata. 

4. M I C H E L  T H E O R E M  AND LINEAR ACTIONS: 
CRITICAL DIRECTIONS 

Notice that for linear actions of G on the linear space M = R m or M = 
C s, strata in M will come on linear subspaces, so that there cannot be orbits 
(other than the trivial one made of  the origin alone) co e f~= M / G  isolated 
in their stratum. At most, one can have that there are orbits isolated in their 
stratum in the orbit space on S ' " - 1 _  ~ R'", i.e., f~s = S m- l/G; in other words, 
we can have at most one-dimensional strata. This is indeed enough for our 
purposes: in fact, it is easy to see that VV(x) is in the tangent space to the 
stratum of the G-orbit through x (Michel, 1971, 1972; Abud and Sartori, 
1983); if this is one dimensional and V(x)-~  oo for [x[~ ~ (we also say 
such a potential is confining), we have that necessarily V has a critical orbit 
on this one-dimensional stratum (the modulus of  this will depend on the 
parameters appearing in the potential). We express this fact by saying that 
(for a linear G-action) an orbit co, ef2s which is isolated in its stratum is 
a critical direction: any G-invariant confining potential has a critical orbit 
co =pCOs, p e R + .  

If Vis G invariant, confining, and depends on a real parameter • (phys- 
ically, s  l /E ,  so t h a t / ; > 0 )  such that for s  ~-=0 is a minimum of V(~) 
and that at some value ;~ = 20 > 0, ~ = 0 becomes unstable (i.e., a maximum 
or a saddle point for V), a straightforward consequenc e of the Michel 
theorem is the Equivariant Branching Lemma of  Cicogna (1981) and Vand- 
erbauwhede ( 1982).3 

3Generalizations of this were given by Cicogna (1984; see also Cicogna and Degiovanni, 1984) 
for higher-dimensional critical space, by Golubitsky and Stewart (1985) for the Hopf bifurca- 
tion, and by Cicogna (1990) for nonlinear group actions. See also Golubitsky et al. (1988) 
and Gaeta (1990) for applications and Gaeta (1992b) for an extension to gauge symmetries. 
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The Equivar iant  Branching Lemma ensures that  in this case V,~ there 
exists a critical orbit  c0()~)=p (A.)o)s, and p (,~) = 0 for  ~ < ~ , ,  where t ,  is the 
value at which ~ = 0 loses stability in the cos direction (this can be different 
for different critical directions), while for A, > ~ ,  there exists a smooth  branch 
of  critical points given by (7~-2~,)= s(e), p =/[~(e) .  4 

Such a result was actually already used in the pioneering work of  Michel 
and Radicati  (1971, 1973) on the octet o f  SU(3) and in general on the adjoint  
action o f  SU(n). 

5. A P P L I C A T I O N  T O  N I E L S E N  M O D E L S  

Let us now see how this applies to Nielsen models, i.e., to the case that  
the group under  considerat ion is Gv = S | ~, with c~ = (G)| S =  Sn (see 
section 2). 

Gv - S ,  | r with S~c_S, The subgroups o f  Gv will be o f  the form ~,i_ 

Let us first concentrate  on the S symmetry.  Clearly, S is itself an isotropy 
subgroup in E, with fixed space W(S) isomorphic to M :  in fact, if 4 = 
( x ~ , . . . ,  x,,) with xl=x2 . . . . .  x , = z e M ,  then a ~ = ~ ,  VaeS, and 

: { r  ,x,)lx,=x2 . . . . .  Xn}-----{X} = M (12) 

Notice that  if S is the only symmetry in the model  (i.e., G = {e} ), then W(S) 
corresponds to the only critical direction. 

Consider now the G action on M;  let ZoeM correspond to a critical 
direction for it, with Gzo=HC_G. It  is quite immediate that also ~0 = 
(Z0, �9 �9 �9 ;go)eE corresponds to a critical direction for the action o f S  | ~ ~# 
on E. 

Indeed, ~ f = ( G )  | acts on W(S) by t h e  diagonal action, i.e., by 
g |  �9 �9 | g, so that on the diagonal subspace W(S)~-M the N-action is just 
a G-action. 

N o w  "general ly"  [but not  always: see Field and Richardson (t989, 
1990, 1992; Field, 1989) for recent complete discussion and resultsl critical 
directions correspond to maximal isotropy subgroups ( M I S ) ]  '6 We have just 

4We write it in this way because it would not be possible to write directly # in terms of (~ - ~,) ; 
the perturbative techniques needed to write s and # as a series in e go back to Poincar~ and 
Lindestedt; see, e.g., Sattinger (1973). 

5It should be remarked that this is, e.g., the case for the adjoint representation of any SU(n) 
group, and for a number of other physically interesting cases; the determining criterion is 
based on Weyl groups (Field and Richardson, 1989, 1990, 1992; Field, 1989). 

6Since we want to deal with linear representations, we always have that x = 0 is invariant under 
the full group, which is therefore an isotropy subgroup. We define a nontrivial isotropy 
subgroup as a subgroup H such that W(H)\{0} is not empty, and by an MIS we will mean 
a maximal nontrivial isotropy subgroup. 
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seen that S is itself an isotropy subgroup, with nontrivial fixed space; there- 
fore the MIS of Gv will be of the form 

G~=S |  ~r (13) 

with fql ~ f9. This has S as a subgroup, and therefore W(G iv) ~_ W(S), so that 
every MIS of G~ has a subspace of W(S) as a fixed space. 

We have already remarked that fq acts on W(S)~-M by the diagonal 
action, i.e., as G, so that finally we have that the MIS of Gv are necessarily 
of the form 

G'~= S | (G?")d,~g~S | G, (14) 

with Gi-~ G an MIS for the action of G on M. 
Let us summarize our discussion as follows: 

(a) Critical directions under the G-action are reflected in critical 
directions under the (S |  N)-action. 

(b) Generically, critical directions of (S | N) lie in the diagonal sub- 
space W(S) ~- M. 

(c) On this subspace, critical directions correspond to those of the G- 
action; these are the (S | ~ )  critical directions whose existence 
is ensured by (a). 

In physical terms, these points have the following meaning: 

(a) All the symmetry-breaking patterns predicted by the standard (G) 
model will also appear in the Nielsen model. 

(b) Generically, in the low-energy limit, Nielsen models (S |  ~q) 
break down their symmetry to the diagonal action, i.e., to the 
underlying (standard) G-model. 

(c) When breaking down to the diagonal action, the Nielsen model 
predicts exactly the same symmetry-breaking patterns as the 
underlying (standard) G-model. 

We stress once more that, depending on the underlying G symmetry, the 
Nielsen model can or cannot give symmetry breakings which are not pre- 
dicted by the (standard) G-model; in any case the full symmetry-breaking 
content of the G-model is conserved by the corresponding Nielsen model. 

We will now briefly consider some examples of Nielsen models with 
elementary G groups in order to illustrate our discussion. 

6. SIMPLE EXAMPLES 

We will adapt the Nielsen setting to the examples considered in Section 
3, i.e., we consider now the corresponding Nielsen models. 
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(i) Here M = R, G = Z2. This means that V= V(xl . . . . .  x,) can actually 
be written as V= V(x~ . . . .  , x]) ; the S symmetry ensures that V(o-~ ) = V( ~ ), 
Vet eS, where ~ = (Xl . . . .  , x,). 

The E space is Rn; the orbit space under ~ = ( G )  | is R2+; taking into 
account the S symmetry, this reduces to the sector identified by, say, 
X 1 ~ . ~ X 2 ~ -  �9 . . ~ X n .  

The points on the line x~ =x2 . . . . .  x ,=  Z have isotropy S for Z r  
and S | Z2 for Z = 0; these are the only points with S symmetry, and 
therefore this line corresponds to a critical direction: the Nielsen model 
breaks down to a Z2-model. 

(ii) Let us consider the next example in full detail. Let n = 3 and G =  
SO(2) acting in R 3 as in Section 3; let M = S Z c R  3. We have seen that G- 
orbits on M are indexed by a real number cos[ -1 ,  1], and there are two 
strata: ff~o = {-1  } u {1) with Gx = SO(2) and ~ ,  = ( -1 ,  1) with Gx = {e}. 

The orbit space of f f = G | 1 7 4  can be represented as a cube; 
the vertices have ~ x = S 0 ( 2 ) | 1 7 4  the edges have fix= 
SO(2) | SO(2) | {e) (or permutation of the factors), the faces have fix = 
SO(2) | {e} | {e) (or permutation of the factors), and the interior of the 
cube has ~ = {e} | {e} | {e). 

If  now we introduce the $3 symmetry, the orbit space reduces to a sector 
of the cube, identified by, say, xj < x2 < x3; see Figure 1. 

Now, the diagonal AD in the interior of  the cube corresponds to points 
with xl = x2 = x3, i.e., Sx = $3; the planes ABD and A CD in the interior of 

B C 

Fig. 1 
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Table I 

Points Relations satisfied G~ 

x = A ,  1) xj =x2=x3 = + I  $3 |  [SO(2)13 
x e A D  xl =x2 = x3 # 4-1 $3 |  {e} 
x = B xl = x2 = - 1, x3 = 1 $2 @ ~ [(SO(2))2 @ SO(2)] 
x =  C xl = -1 ,  x2 = x3 = 1 $2 |  [SO(2) | (SO(2))~] 
x e A B  x, = x 2 = - l ,  x3 #4-1 $2 |  [(SO(2)),~| {e}] 
x s A C  x l = - l ,  x 2 = x 3 # + l  $2 |  [(S0(2))|  ) 2] 
x~BC x ~ = - l ,  x z ~ + l ,  x3=l  {e} |  [S0 (2 ) |174  
x~DC x, 4= 4` 1, x2 = x3 = 1 Sz |  [{e} | (SO(2))~] 
x~BD xl =x2#4`1,  x3 = 1 $2 |  [({e} )2| S0(2)] 
xeABD x ~ = x 2 r 1 6 2 1 7 7  $2 |  [({e})2| {e}] 
x e A C D  x, #4-1, x2=x3 ~ •  $2 |  [{e} | ({e})2] 
xeBCD x , f : x 2 r 1 7 7  x3=l  {e} |  [({e})2| 
xEinterior x l # x 2 r  x3~4-1 {e} |  [{e}] 

the cube correspond to points with, respectively, x~ = x  2 and x2=x3 and 
therefore Sx = $2. Considering the full S | ~ ff symmetry, we have the situ- 
ation depicted in Table I. In terms of strata, we have the situation described 
in Table I I .  

Notice that not only the vertices A and D corresponding to the full 
symmetry $3 | ~ SO(2),  but also the vertices B and C are isolated in their 
stratum and therefore correspond to critical directions. In other words, 
besides the breaking to the underlying SO(2) model, the present example 
shows other symmetry breakings. Notice that these correspond to different 
copies of  M selecting different (equivalent) critical points co = + 1. 

(iii) Let now M = R  2, G = Z ~ |  so that the G-orbit space is R 2. 
Again, for any n the W(S) plane Xl=X2 . . . . .  x , = z ~ R  2 will have S,  
symmetry; in this plane we can repeat the analysis of  Section 3. 

Notice that since there is only one G-orbit isolated in its stratum, the 
only (S,  | ff)-orbit isolated in its stratum will lie in W(S):  it is x~ . . . . .  

Xr~ ~ 0~ 

Table II 

Stratum X Elements of X Gx 

n~0 ') {A, D} S3 |  SO(2) 
ag 2) {B, C} S t  '2~ |  [(SO(2))~| 

~ ' )  {AB, CD} Sz |  SO(Z) 
n~ 2) AD $3 |  {e} 
n[ 3) {AC, BD} $2 |  SO(2) 
n} 4) BC {e} | ~ [SO(2) | SO(2)1 
n~" {ABD, ACD} $2 |  {e} 
n~z 2) BCD {e} |  SO(2) 
~(3 ') {interior} {e} 
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Should we take M =  S1c  R 2, we would have three strata for G-orbits: 
one given by points (0, 1) and (0, -1 )  with isotropy Z~, one by points (1, 0) 
and ( -1 ,  0) with isotropy Z y, and the other one by remaining points with 
isotropy {e}. 

Now, considering, e.g., n = 2, not only are the (orbits of the) points with 
xl --x2 = (0, 1) or (1, 0) isolated in their stratum, but so is (the orbit of) xl = 
(1, 0), x2=(0, 1). 

(iv) Finally, let us consider G=SU(2) with the standard action on 
C2_ ~ R 4. This action is such that G~ = SO(2)= U(1) for x ~ 0, Gx = S U(2) for 
x=0 .  Therefore the only Gv-orbits which are isolated in their stratum are 
those lying in W(S), i.e., corresponding to the diagonal SU(2) action. 

The same holds for the standard action of SU(3) on C 3 or, by the way, 
of SU(n) in C n or SO(n) in R n (n_>2), the relevant property being the 
transitivity of the action on the relevant unit sphere, so that all points x %0 
belong to the generic stratum. 

This does not hold for the adjoint SU(n) action, n_> 3: e.g., for su (3 )  
it is well known (Michel and Radicati, 1971, 1973) that there are nontrivial 
directions [corresponding to the SU(3) octet]; in analogy to case (ii), one 
will have, besides the breaking to diagonal action, other possible symmetry 
breakings. To ensure the diagonal one is favored over the other ones, one 
could still find suitable conditions on the potential: e.g., in (7) a term 
with fl > 0. 
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